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1 Introduction

1.1 Project

The initial objective of this project was to recreate a GPT model with optimal control. However, we
have since shifted our focus to gaining a deeper understanding of the underlying concepts, from the
architecture of transformers to the role of optimal control in machine learning. This study begins with
an exploration of transformer models, analyzing the mathematical principles behind each component.
We then examine nanoGPT as a simplified implementation to reinforce our understanding. Finally, we
investigate how optimal control techniques can be applied to ResNets, a family of neural networks similar
to large language models, in order to eventually apply these methods to LLMs.

1.2 Organization

For this project, we made two groups of three. The mathematics group is calculating the complete
function of nanoGPT model in order to formulate it as an optimal control problem. The computing
group is coding nanoGPT in Julia and will then implement the optimal control problem. We use Notion
to add and assign the tasks for the project and share code and files on Github.

2 Transformers

2.1 Preprocessing

Before training any machine learning or deep learning model, data preprocessing is a critical step that
ensures the quality and reliability of the input data. Raw data is often noisy, inconsistent, or incomplete,
which can negatively impact model performance. By cleaning, transforming, and structuring the data
appropriately, we can improve learning efficiency and accuracy.

2.1.1 Database

For this project, we are using a simple dataset called tiny shakespeare, created by the developer of
nanoGPT. It is straightforward and contains 167205 lines of theatrical dialogue.

2.1.2 Tokenization

Tokenization is one of the most important part of machine learning, and have a great impact on the
performance of the final result. It is the part that consist by dividing the database into multiple tokens,
and after transforming these tokens into number in order to have a vector of number readable by the
model. An important point is that to make a translation between a token and a number, we need to
define a vocabulary, which can be seen as a bijective function that associate one token to one number.
The choice of the way we tokenize matter and can impact on :

• The performance

• Number of Parameters: The higher the number of tokens, the more parameters there are. This
is related to the dense layer in the output.

• The computational time

Let us take an example of the following sentence : I love doing machine learning., and let us try to
tokenize it with differents methods.

Character tokenization The idea is simple: each character is a different token. So with our example,
the induced tokezination will be :

[I, , l, o, v, e, ,d, o, i,n, g, ,m, a, c,h, i,n, e, , l, e, a, r,n, i,n, g, .]

With this tokenization, the benefits are :

• The number of tokens is limited to the number of characters that exist in a language. For ex-
ample, with our dataset, the number of tokens is around 70, as it includes uppercase letters and
punctuation.
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• This method is the simplest to implement as the String is usually seen as vector of Char.

But on the other hand, the result are not the best one, because the network need to make a lot of
link between all the tokens to write good and complex response.

Word tokenization In this type of tokenization, each word is considered a token. Using our example,
the tokenization will be as follows:

[I, love,doing,machine, learning]

It induced the following points :

• First, this method results in a larger number of tokens compared to the character-based method.
This leads to an explosion in the number of parameters in our network, which can increase the
training time.

• The distribution of tokens may be unbalanced within the dataset, with some words being highly
represented and frequently encountered by the model, while others are poorly represented and
rarely seen. This issue can result in the model having a limited vocabulary.

Radical tokenization This tokenization is a mix of the previous methods. In many languages, we
can observe that certain parts of words are often repeated, such as the endings of conjugated verbs or
common suffixes like ’tion’. The idea is to divide words by splitting them into their roots and affixes.
With our example, the induced tokenization will be :

[I, , love, ,do, ing, ,machine, , learn, ing]

This approach helps reduce the total number of tokens while still capturing meaningful linguistic
patterns.

2.1.3 Data preparation

Now, we have some data and a tokenization method. However, a machine learning model can only
process numerical values in vectors of fixed size. The first step is to find all the existing tokens in the
dataset and store them into a long vector called Vtoken of dimension m containing all the tokens. Next,
we need to define the vocabulary, which, as previously mentioned, is a bijective function that associates
each token with a unique number. By using this function we have :

V = vocabulary(Vtoken)

Where V = {1, . . . ,m} denote the representation in integer of the tokens . An efficient way to implement
this vocabulary is by using a dictionary structure. Using this dictionary, we can transform all of our data
into token vector and then into an integer vector, denoted as X.

At this point, we need to split this vector into multiple vectors of the input sequence size. This
size, denoted as n, can either be fixed at a specific value or determined using statistical methods on the
dataset. Here, we choose to fix this value between 64 and 200. Once n is defined, we split our initial
vector into sub-vectors of size n without overlapping, discarding the last sub-vector if it does not match
the size n. This leads us to the following vector :

Xtrain = (X1, · · · ,XKtrain)

Where :

• Xtrain have size (Ktrain, n)

• Ktrain = ⌊ len(X)
n ⌋.

• Xk = (Xk
i )i≤n, Xk

i ∈ V
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We now need to construct the vector Ytrain = (Ŷ
1
, · · · , Ŷ

Ktrain
) of the same size as Xtrain where

Ŷ
k
= (Ŷ k

i )i≤n, Ŷ k
i ∈ V .

This vector is the ground-truth and it is constructed based on how we train the model. For models
belonging to the GPT family, the target vector is the same as the input vector but shifted by one position
to the left. For example :

• If X1 = [1, 2, 3, 2, 3]

• Then Ŷ
1
= [2, 3, 2, 3, 1]

These preprocessing steps lead us to two vectors of the same dimensions: Xtrain and Ytrain. The final

step is to transform each value in Ŷ
k
into a one-hot vector denoted ŷk. In fact, models belonging to

the GPT family do not predict a single index for each neuron in the output layer; instead, they predict
a probability distribution representing the likelihood of each word being the correct one. Thus, each
neuron in the output layer predicts a probability distribution of the vocabulary’s size. A one-hot vector
is a vector with zeros everywhere except for a single position containing a one. Therefore, for each value

in Ŷ
k
, we replace it with a vector that has a one at the index corresponding to that value leading us to :

∀ Ŷ k
i ∈ V, i ≤ n, k ≤ Ktrain =⇒ ŷki ∈ Ω(V ), ŷki ∈ {0, 1}m

Where Ω(V ) is the probability space associated with V .

Then we define ŷk as :

ŷk = [ŷk1 , . . . , ŷ
k
n]

Let us do an example : if m = 3, and Ŷ
1
= [2, 3, 2, 3, 1], the resulting value will be :

ŷ1 = [ŷ11 , ŷ12 , ŷ13 , ŷ14 , ŷ15 ]

=

0 0 0 0 1
1 0 1 0 0
0 1 0 1 0
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2.2 Model

2.2.1 Embedding

Embedding techniques are crucial in transformer-based language models like nanoGPT. It comes after
the tokenization phase 2.1.2 and aim to convert a piece of information, for example, text, images, audio,
etc. into continuous vector representations of a size d. Given the text ”Hello nanoGPT !”, the embedding
could have a vector representation with a list of d = 5 numbers [0.5, 0.85, 0.06, 0.2, 0.008].
In our case, we want to transform our input sequence Xk into a matrix xk. We can see the embedding
part as a function defined as:

Embedding :
{1, . . . ,m}n −→ Rd×n

Xk 7−→ xk

This matrix contains the meaning of the sequence. More precisely, if we have the i-th token from the
k-th sequence Xk

i ∈ V , then we have :

Xk
i −−−−−−−→

embedding
xk
i =

x
k
1,i
...

xk
d,i

 ∈ Rd

.
We can do different things using the embedding vector such as calculating the distance between two

embeddings to determine how well the meaning of sentences matches. Let’s go through different types
of embeddings:

1. Word Embedding
When dealing with text in machine learning, after the tokenization phase, we need a way to
represent tokens numerically by transforming them into vectors. There exist plenty of ways to
do achieve this transformation but only two type of word embedding exist : trainable and non-
trainable. In the following, we will go through an example of each type.

• One-Hot Encoding
One-hot encoding[1] is the simplest form of word representation. Each word in the whole
vocabulary is represented by a binary vector called one-hot vector. Their length is equal to
the size of the vocabulary and only one position is set to 1 all the others are equal to 0. For
instance, let us have a vocabulary Vtoken = {I, love,machine, learning}. In order to do one-
hot encoding, each word could get their position in the vocabulary as their index. Therefore,
we have the following result :

I −→


1
0
0
0

 , love −→


0
1
0
0

 , machine −→


0
0
1
0

 , learning −→


0
0
0
1


Most of the times, one-hot vectors are often not used as embeddings but as input in order to
learn dense embeddings.

• Learnable Word Embedding
Unlike one-hot encoding, learnable word embedding is trainable and improve over time by
learning the best vector representation through backpropagation. It represents tokens into
dense numerical vectors that are initialized randomly and updated during the model training.
Theses embeddings are often used in Transformer-based models (it is also the one used in
nanoGPT). After training, words with similar meanings have closer embeddings. We did
not mention the dimension of the embeddings d, but their size is fixed and in the case of
nanoGPT it is equal to n embd = 768. The reason their size is fixed[2] is because it will help
the transformers process all embeddings in an uniform way but also because of mathematical
operations used in the transformer such as matrix multiplication.

2. Positional Embedding
Positional embeddings are added to give the model information about the position of each token
in a sequence. Without this, a transformer model would treat all tokens as unordered. And just
like the word embeddings, there exists trainable and non-trainable method. In the following, we
will go through an example of each type.
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• Sinusoidal Positional Encoding
In the original article about transformers[2], sinusoidal positional encoding is mentionned. It
is described with the following formulas :

PE2l,i = sin(
i

10000
2l
d

), PE2l+1,i = cos(
i

10000
2l
d

), where l ∈ N, 2l + 1 < d

with l the dimension, i the position of the token in the sequence (it starts at 0 for the first
token) and d the dimension of the embeddings. We obtain a general formula of P :

Pi =


PE2×0,i

PE2×0+1,i

...
PEd−1,i


By alternating between sine and cosine, the positional encoding creates smooth-wave like
encoding and positions far apart have distinct encoding while close positions have similar one.

In order to be more clear, let us have an example : if d = 4 and the word is the 4th one (i = 0
for the first word) and whatever the sequence it belongs to then its sinusoidal positional
encoding would be :

P3 =


PE0,3

PE1,3

PE2,3

PE3,3


The 10,000 constant in sinusoidal positional encoding balances short-range and long-range
dependencies in transformer-based models. It ensures a smooth frequency distribution across
embedding dimensions, allowing the model to distinguish both nearby and distant token po-
sitions.

• Learned Positional Embeddings
Learned positional embeddings is a trainable alternative to fixed embeddings method such as
sinusoidal positional embeddings. Instead of using fixed mathematical functions, the model
learns the positional information throughout the training phase that is captured in a weight
matrix P ∈ Rd×n where the i-th column, denoted as Pi, is the positional embedding associated
with the i-th word in the sequence. And just like learnable word embedding, the positional
embeddings starts randomly and is updated through backpropagation. Even though, this
alternative is able to learn different properties such as the words at the end often provides
conclusion, it cannot generalize to longer sequences than it was defined for.

In our project, we are focusing on one specific model called nanoGPT, it employs Learnable Word
Embedding due to their flexibility and ability to optimize within the model’s architecture. For the i-th
token of the k-th sequence, xk

i assigned a trainable embedding vector Ek
i . It also adopts Learnable

Positional Embeddings as they allow better performance than predefined functions. For the i-th token
of the k-th sequence, xk

i assigned a trainable embedding vector Pi.

The final input embedding xk
i = Ek

i + Pi. This summation ensures that both token identity and
positional context are encoded efficiently.

2.2.2 Attention block

The objective of Self-Attention is to compute how much a word is influenced by each of his neighbors.
Self-attention goal is to constructs meaningful representations by incorporating information from all

words in the sequence. Let xk
i =

x
k
1,i
...

xk
d,i

 ∈ Rd, with i ∈ {1, . . . , n} the embeddings vectors associated

with each Xk
i . But for better clarity, we will consider only consider one sequence and therefore we will
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use xi instead of xk
i . If there was multiple sequences, instead of using matrices, we would use tensors in

order to compute in parallel the different attention score from the different sequences.
Let x = (xi)i≤n ∈ Rd×n, each xi ∈ Rd represents the embedding of Xi and has 3 associated vectors

: the query qi which represents what the token is looking for in other tokens, the key ki which rep-
resents what information the token has to offer and the value vi which represents contains the actual
information being passed forward. If there are H heads, then each xi will have H sets of 3 vectors
{q1i , k1i , v1i }, . . . , {qHi , kHi , vHi }. Let h be the attention head we are inspecting. What follows next are
computed in parallel for each head.

Step 1 : The self-attention mechanism uses three trainable weight matrices Wh
q ,W

h
k ,W

h
v . These

matrices are multiplied by each xi in order to project the input into query, key and value components
respectively :

qhi = Wh
q xi ∈ Rdk

khi = Wh
k xi ∈ Rdk

vhi = Wh
v xi ∈ Rdv

And obviously, we have Wh
q ,W

h
k ∈ Rdk×d and Wh

v ∈ Rdv×d. The three weight matrices are usually
initialized randomly[3] and then the weight are updated throughout the training process.

Step 2 : For each xi , we calculate its score with each xj with j ∈ {1, . . . , n} (himself included) and
it will represent how much attention xi should pay attention to xj . To ensure stable gradients, we scale
the scores by the square root of the key dimension, denoted as dk, before applying the softmax function.

ahi,j =
exp(

(qhi )T khj√
dk

+Mi,j)∑n
l=1 exp(

(qh
i
)T kh

l√
dk

+Mi,l)

with Mi,j =

{
0, if j ≤ i (allow attending to self and past tokens)

−∞, if j > i (mask future tokens)

The presence of the mask M = (Mi,j) ∈ Rn×n is optional but ensures that predictions will only
depend on past and present tokens. For instance for xi, the prediction will only depend on xj for
j ∈ {1, . . . , i}.

Step 3 : The final output representation zhi ∈ Rdv for each word is computed as a weighted sum of
all value vectors:

zhi =

n∑
j=1

ahi,jv
h
j

And finally, if we concatenate all the final output representation for the head h, we have the attention
associated with this head :

Atth(x) = (zhi )i≤n ∈ Rdv×n

Final step : In practice, transformers use multi-head attention, where multiple self-attention heads
run in parallel, each learning different aspects of the input. Each attention head computes its own self-
attention output Atth(x) with h ∈ {1, . . . ,H} where H the number of heads. And the result is obtained
by concatening all the different attention and then projecting it back to the original dimension :

MultiHead(x) = ([Att1(x)
T , . . . , AttH(x)T ]Wo)

T ∈ Rd×n

with Wo ∈ RHdv×d another trainable weight matrice that projects the output back into the model’s
original dimensionality.

The attention block allows the model to capture multiple types of relationships between words,
improving its expressiveness. You will find a simple numerical example in order to understand better
how the self-attention is computed 2.5.
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2.2.3 Other important layers

We previously seen the two important parts of the model belonging to the GPT family. But there are
also other interesting layers in those model.

Layer Normalization The Layer Normalization[4] was created in 2016 in order to accelerate the
training process. Its goal is to apply a normalization to standardize the embedding components along
the sequence length. Let us denote by xk ∈ Rd×n the vector that enters this layer and yk the output.
The following formula gives us :

yk
l,i = LayerNorm(xk)l,i

=
xk
l,i − E[xk

l ]√
V ar[xk

l ] + ϵ
× α+ β

Where :

• α and β are two trainable values.

• ϵ is a threshold for numerical stability.

• With E[xk
l ] =

1
n

∑n
i=1 x

k
l,i the esperance along the n dimension, which is the sample mean of the

k-th sequence.

• And V ar[xk
l ] =

1
n

∑n
i=1(x

k
l,i − E[xk

l ])
2 the variance along the n dimension, which is the sample

variance of the k-th sequence.

Dropout Dropout is a regularization technique[5] used to reduce the overfitting of a model. The goal
is to force some neurons to have zero values between two layers, in order to encourage other neurons to
be activated. With a dropout layer, we don’t want the model to rely on only a few neurons with strong
connections but to have a more balanced distribution across all neurons. Typically, a dropout layer takes
as input a percentage p that represents the proportion of neurons to deactivate during a call. Thus, at
each call, different neurons will be deactivated. Finally, the classical implementation uses a Bernoulli
distribution to choose the neurons to deactivate.

Multilayer Perceptron(MLP) A multilayer perceptron consists of fully connected neurons with non-
linear activation functions, organized in layers. In our case, it serves to learn richer features and high-level
patterns. After going through the self-attention process defined in section 2.2.2, if we consider only one
sequence, each embedding xi is transformed into a new representation denoted as zi = (zl,i)l≤d ∈ Rd

that incorporates information from all the different words in the same sequence. Therefore, we have a
matrix z = (zl,i)l≤d, i≤n ∈ Rd×n, and it is the same matrix that will be used as input for the MLP.

With our notation, a layer can be simply represented with the followinng formula :

y = (yi)i≤n where yi = f(Wzi + β)

• z = (zi)i≤n, z ∈ Rd×n is the input.

• W ∈ Ra×d is the weight matrix of a neurons in the layer.

• β ∈ Ra is the bias. It serves to prevent null activation and can be seen as the noise of the layer.

• f is the non-linear activation function.

• y ∈ Ra×n is the output of the layer.

The nonlinear activation function used in nanoGPT is the GELU function, represented in Figure 1.
And in the case of nanoGPT, but also in most Transformer-based models, the MLP does not change
the dimension of the input, it is used to transform the information by adding non-linearity to the new
representation and enriches token representation. It expands the embedding dimension to a hidden
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dimension denoted as dh and back to d. We can see the MLP as a module that takes as input the matrix
zk ∈ Rd×n and outputs yk ∈ Rd×n:

yk = MLP(zk)

Since the MLP uses the same weights along the n dimensions, we can simplify the equation by
considering each column of zk separately. Let us define zk = [zk1 , . . . , z

k
n], where ∀i ∈ [1, n], zki ∈ Rd.

The MLP then results in the following formula:

yki = W2 ·GELU(W1 · zki + β1) + β2

• yki is the output of the MLP layer and a new enriched representation of a token. We can combined
them to obtain : yk = [yk1 , . . . , y

k
n], where ∀i ∈ [1, n], yki ∈ Rd

• W1 ∈ Rdh×d is the projection from an embedding of size d to an embedding of size dh.

• β1 ∈ Rdh is the same bias for the n tokens.

• W2 ∈ Rd×dh is the projection that bring back the embedding size from dh to d.

• β2 ∈ Rd is the same bias for across n tokens.

Figure 1: GELU function

Linear and SoftMax layer The final layer of a model belonging to the GPT family is a dense layer
that applies the softmax function. Along the columns, we have logits, which need to be transformed into
probability distributions. It takes the tensor xk and produces yk ∈ [0, 1]m×n :

yk = SoftMax(Linear(xk))

By taking xk = [xk
1 , . . . , x

k
n] where ∀i ∈ [1, n], xk

i ∈ Rd, we can use the previous formula of a dense
layer, and simplifying the equation by considering each column of xk separately, this leads us to:

yki = SoftMax(Wsf × xk
i + βsf )

Where :

• yk = (yki )i≤n ∈ [0, 1]m×n, yki ∈ Ω(V )m.

• Wsf ∈ Rm×d the weight of the layer shared through the column of xk.

• βsf ∈ Rm the bias of the layer shared through the column of xk.

To understand the computation of yk more precisely, let us define x̄k
i = Wsf × xk

i + βsf ∈ Rm.
As the softmax function is applied along the column (the m dimension), the calculation of a term in

the jth row and the ith column is:

ykj,i = SoftMax(x̄k
i )j

=
ex̄

k
j,i∑m

a=1 ex̄
k
a,i
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2.3 Notations and Transformations

Here is a recapitulatory list of all the notations used in the previous section:

• n is the length of the input sequence.

• d is the dimension of the embedding.

• H is the total number of attention heads

• Vtoken is the space containing all the tokens, and we have m = card(Vtoken).

• V = {1, . . . ,m} is the space containing the integer representations of the tokens in Vtoken.

• vocabulary is a bijective function defined as:

vocabulary :
Vtoken −→ V

tok −→ x

• X represents all the data.

• Xk = [Xk
1 , . . . , X

k
n] = (Xk

i )i≤n is the input such that (Xk
i )i≤n ∈ V and k ≤ Ktrain with Ktrain =

⌊ len(X)
n ⌋.

• The embedding vector associated with an input token i of the k-th sequence (Xk
i ) is denoted as

xk
i ∈ Rd. We note that in the network, xk has dimensions (d, n).

• Ŷ
k
= (Ŷ k

i )i≤n is the ground truth such that (Ŷ k
i )i≤n ∈ V n.

• Yk = (Y k
i )i≤n is the output of the model such that (Y k

i )i≤n ∈ V n.

• We denote Ω(V ) as the probability space associated with V with a probability function P .

• We denote yki ∈ [0, 1]m as the probability associated with Y k
i , and ŷki ∈ {0, 1}m as the one associated

with Ŷ k
i .

• The indices vary as follows: i relative to n, j to m, l to d, h to H, and k to Ktrain.

Now, let’s consider the following equation:

Y = Module(X)

In the following table, we will describe the variation of the dimensions regarding different modules
representing different parts of the network:

Module X Y
Tokenization V n

token V n

Embedding
Token V n Rd×n

Positional V n Rd×n

Positional + Token V n Rd×n

Dropout Rd×n Rd×n

Transformer
Attention Rd×n Rd×n

MLP Rd×n Rd×n

Softmax Rd×n Ωn

LayerNorm Rd×n Rd×n

Linear + Softmax Rd×n Rm×n

2.4 Inference

After the training phase, we want to use the model, it is the inference part. We need to give him as input
a vector of size n (with n the length of the sequence defined previously in 2.1.3). If the input sentence
is lower than n, we will just complete with random token in order to have the correct size. To make a
prediction we use the following algorithm :

An important point is that at each step, we are only looking at the token immediately following the
current one, and not the other tokens. Moreover, in order to avoid always predicting the same token and
to introduce some randomness in the prediction, we do not select the token with the highest probability.
Instead, we randomly select a token according to its probability distribution.
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Algorithm 1 Inference

1: s← ”i love doing machine learning”
2: cpt← len(s)
3: if len(s) < n then
4: complete s with random characters until len(s) = n
5: end if
6: x← tokenization of s
7: while cpt < n do
8: y ← prediction of the model with x
9: p← softmax(y[cpt])

10: j ← get an index randomly by the distribution probability of p
11: x[cpt]← j
12: cpt← cpt+ 1
13: end while

2.5 Example of nanoGPT Processing Chain

In this part we describe a simple computational processing chain using nanoGPT. The goal is to illustrate
how input data passes through multiple processing steps including tokenization, embedding, transfor-
mation through attention layers, and final prediction. The processing chain consists of the following
steps:

1. Tokenization:

nanoGPT uses the GPT-2 tokenizer from the tiktoken library. Given an input text, it is converted
into a sequence of token IDs. For example:

Text: ”Hello Nano”
Token IDs: [15496 33504]

2. Embedding Layer:

Each token is mapped to a learned embedding vector. In our example, we use 4-dimensional em-
beddings:

E word(15496) = [0.1 0.3 − 0.2 0.5] for ’Hello’
E word(33504) = [−0.4 0.2 0.6 − 0.1] for ’ Nano’

The token embeddings are initialized randomly and learned during training to capture semantic
relationships between words. nanoGPT uses learned positional embeddings rather than the sinu-
soidal encodings from the original Transformer. Each position in the sequence gets its own learned
embedding vector:

P (0) = [0.2 − 0.1 0.4 0.3] for the first position
P (1) = [−0.3 0.2 − 0.1 0.5] for the second position

The final embedding for each token is the sum of its token embedding and positional embedding:

For ’Hello’ at position 0 → E(0) = E word(15496) + P (0) = [0.3 0.2 0.2 0.8]
For ’ Nano’ at position 1 → E(1) = E word(33504) + P (1) = [−0.7 0.4 0.5 0.4]

3. Self-Attention:

We compute queries ( Q = E ×Wq ) , keys ( K = E ×Wk ), and values ( V = E ×Wv). For
simplicity, assume weight matrices:

Wq =


0.2 −0.1
0.5 0.3
−0.3 0.2
0.7 −0.5

 ,Wk =


−0.1 0.6
0.4 −0.2
0.2 0.5
−0.3 0.1

 ,Wv =


0.3 −0.4
0.2 0.6
−0.5 0.1
0.4 −0.3

 .
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We get for the first token (‘Hello’):

Q(0) = [0.67 − 0.37]
K(0) = [−0.13 0.36]
V (0) = [0.37 − 0.31]

And for the second token (‘Nano’):

Q(1) = [0.13 0.07]
K(1) = [0.07 − 0.17]
V (1) = [−0.21 0.43]

Then we compute attention scores : S = Q×KT

√
d

. For d = 4, we find :

S1 = [−0.11 0.255]
S2 = [−0.005 0.01]

Normalized and passed the results through a Softmax:

Softmax(S1) =
[exp(−0.11),exp(0.255)]
(exp(−0.11)+exp(0.255)) = [0.41, 0.59]

Softmax(S2) =
[exp(−0.005),exp(0.01)]
(exp(−0.005)+exp(0.01)) = [0.49, 0.51]

We calculate the final attention outputs by multiplying attention weights with values:

Output(0) = 0.41× V (0) + 0.59× V (1) = [0.03, 0.13]
Output(1) = 0.49× V (0) + 0.51× V (1) = [0.07, 0.07]

4. Multi-Layer Perceptron:
After the self-attention layer, the output is passed through a feedforward neural network : Y =
GeLU(W ×OutputT + β). In our example, we can take :

Wf =

 0.8 −0.3
0.2 0.5
−0.4 0.6

, and β = [0.1 − 0.2 0.3]

For the first token ’Hello’:

Y [1] = GeLU(W ×Output(0)T +β) = GeLU([0.085 − 0.141 0.366]) = [0.046 − 0.037 0.301]

And for the second ’Nano’:

Y [2] = GeLU(W ×Output(1)T +β) = GeLU([0.135 − 0.151 0.314]) = [0.078 − 0.041 0.254]

5. Softmax Output:
The final layer of nanoGPT processes the transformed output and converts it into probabilities
using the Softmax function. On the same example we obtain :

Token 1: P1 = [0.311 0.287 0.402]
Token 2: P2 = [0.325 0.288 0.387]
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3 nanoGPT

3.1 nanoGPT structure

nanoGPT[6] is a model very similar to the GPT-3 one. The main difference between the two models is
the optimization as nanoGPT is a simple version to learn GPT and GPT-3 has been optimized. The
structure of nanoGPT was found through the understanding of Andrej Karparthy’s work. He used the
library PyTorch in order to code the different layers of neurons (defined in the model.py file). Let’s
review his code in order to reconstruct the structure of nanoGPT. Every Python class represents a part
of a or a whole block in the figure

3.1.1 Transformer block

The transformer block (defined in the Block class) is represented by a first LayerNorm, defined previ-
ously in the 2.2.3 section,, then an Attention block, another LayerNorm and finally a multilayer per-
ceptron(MLP) block. The structure (cf figure 2) of the previously mentioned blocks will be explained
below.

Figure 2: Diagram of a Transformer block without details

3.1.2 Attention block

After reviewing the forward function from the CausalSelfAttention class, the structure can be easily
retrieved (cf. figure 3) since Karparthy used the Pytorch.nn library. The entry x goes through a Linear
layer self.c attn and then is divided into three different vectors (q, k, v) for each head (self.n head
total heads). Then the three different vectors are used to compute the attention (manually or through
a premade function of Pytorch) as mentioned previously 2.2.2. Finally, the output of each head is
reassembled side by side. And the concatenated result goes through a final Linear layer self.c proj and
a Dropout layer, defined previously 2.2.3, named self.resid dropout.
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Figure 3: Diagram of an Attention block

3.1.3 MLP block

The MLP block (defined in the MLP class) is just after the Attention block 3.1.2. Its usefulness comes
from its ability to apply non-linear transformation to its input, enabling the entire model to learn richer
features and high-level patterns as explained in 2.2.3. The input x goes through the first Linear layer
self.c fc, where the input dimension is expanded (4 times its original dimension). A GELU function
(non-linear) is then applied followed by a final Linear layer self.c proj in order to return x to its original
dimension. And finally, a Dropout layer self.dropout is used to avoid overfitting.

Figure 4: Diagram of a MLP block
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3.1.4 Overall structure

Initially, positional and token embeddings 2.2.1 are made through the nn.Embedding function and then
their sum is passed through a Dropout layer. In order to follow the output transformation, the out-
put of the previously mentioned block/layer will be named x. Thereafter, the output x goes through
self.transformer.h Transformer blocks. And finally, it goes through the last LayerNorm self.transformer.ln f.
At the end of the structure, the final outputs are logits which are unnormalized scores for each token
in the vocabulary at each sequence position. Therefore, given what we explained previously, nanoGPT
structure looks like the following figure 5

Figure 5: Diagram of nanoGPT entire structure

3.2 Training

3.2.1 How it works

At this point, understanding the training process is quite straightforward. In fact, we have already
constructed the two main datasets, Xtrain and Ytrain (cf. 2.1.3), which serve as input-target pairs for
our model. The training process follows a standard supervised learning approach: given a Xk from
Xtrain, the model generates a predicted output Yk. This output is then compared to the corresponding

ground truth Ŷ
k
using a predefined loss function. Afterward, we update the model’s weights using,

for example, the backpropagation algorithm. During training, several hyperparameters influence the
learning dynamics and the model’s overall performance. Among these, the following variables can be
directly modified to fine-tune the training process:

• The batch size : It is the number of couple the network have to predict before we update it
weight, this number is called b.

• The number of epochs : It is the number of time we process the entire data for the training.

• The validation part : At the end of each epoch, we evaluate the model using specific data by
following the same procedure as the training, but without updating the model. This data is often
referred to as validation data and is never used to update the model. The validation data is a
subset of the training data, so we can define a percentage of the total data to be allocated to the
validation set.

• The loss : The loss is the function that measure the difference between the model output and the
desired one.

• The optimizer : The optimizer is the algorithm that update the weights of the model.

• The learning rate : It is a coefficient that weighs the impact of the update on the current weight
of the model.

3.2.2 Loss

In training neural networks, the loss function is a crucial metric that quantifies how far the model’s
predictions are from the correct (ground truth) labels. The goal of training is to minimize this loss so
that the model makes increasingly accurate predictions. For models in the GPT family, the commonly
used loss function is the cross-entropy loss. This loss measures the difference between two probability
distributions: the true distribution (ground truth labels) and the predicted distribution (model’s output
probabilities). Since GPT models are used for language tasks, the classes in this context correspond to
the words in the vocabulary. The model assigns a probability to each word, and cross-entropy quantifies
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how well these probabilities match the actual word that should be predicted. By taking all the previous
notations, it is leading us to :

H(ŷk,yk) = −
n∑

i=1

m∑
j=1

ŷkj,i × log(ykj,i)

With :

• ŷk ∈ Rm×n, (ŷkj,i)j≤m, i≤n ∈ Ω(V ) the ground truth.

• yk ∈ Rm×n, (ykj,i)j≤m, i≤n ∈ Ω(V ) the output predicted by the model.

Let us consider an example where we have m = 3 classes, with the following matrix :

ŷ1 =

0 0 0 0 1
1 0 1 0 0
0 1 0 1 0


y1 =

0.1 0 0.4 0.5 0.6
0.7 0.1 0.4 0 0.3
0.2 0.9 0.2 0.5 0.1


The computed loss will be:

H(ŷ1,y1) = −
5∑

i=1

3∑
j=1

ŷ1j,i × log(y1j,i)

= −(0× log(0.1) + 1× log(0.7) + 0× log(0.2))

− (0× log(0) + 0× log(0.1) + 1× log(0.9))

− (0× log(0.4) + 1× log(0.4) + 0× log(0.2))

− (0× log(0.5) + 0× log(0) + 1× log(0.5))

− (1× log(0.6) + 0× log(0.3) + 0× log(0.1))

= −(log(0.7) + log(0.9) + log(0.4) + log(0.5) + log(0.6))

= 2.5823

But in machine learning, we typically update the model’s weights after multiple evaluations. To
achieve this, we define multiple subsets Bi, called batches, which are randomly selected subsets of the
training set K = {1, . . . ,Ktrain}, such that

⋃
i Bi = K. The size of each batch Bi is referred to as the

batch size, which is a hyperparameter of the training process. Instead of directly optimizing the loss
function, we minimize the cost function, which is the average loss computed over all the data points in
a given batch Bi. The formula is given by:

Ju(Bi) =
1

|Bi|
∑
k∈Bi

H(ŷk,yk)

After computing the loss or the cost function, the optimizer (cf the section below 3.2.3) uses this
value to adjust the model’s weights through backpropagation. The idea is to slightly modify the weights
in a direction that reduces the loss for future predictions. Over multiple iterations, the model improves
and makes better predictions.

3.2.3 Optimizer

The optimizer is the algorithm that update the weight of the model. One famous optimizer is the gradient
descent. The optimizer used in GPT and nanoGPT is the Adam one.

Adam (Adaptive Moment Estimation) optimizer[7] is an optimizer often used for neural network
training and update the weights of the model, including GPT and nanoGPT. To update them, one
common method is to compute the gradient of the loss function. In the Adam case, it uses the combination
of an algorithm called AdaGrad and RMSProp.
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AdaGrad for adaptive gradient algorithm. AdaGrad is a stochastic gradient descent algorithm with
learning rates as an additionnal parameter. For classical method learning rate is a fixed value common
to every components, but AdaGrad has a learning rate for each component that is changed at every
iteration with the following formula

Let gt,i be the gradient at the iteration t on the component i. We defined Gt,i as the sum of the
square of every gradients up to the iteration t on the component i. Then the learning rate is given for
each component and iteration by the following formulas :

G0,i = g20,i, (1)

Gt,i = Gt−1,i + g2t,i, (2)

wt+1,i = wt,i −
α√

Gt,i + ϵ
gt,i (3)

with α being the initial learning rate and ϵ being a small term to avoid diving by 0.
An other method used for learning rates by components is RMSProp for Root Mean Square Propa-

gation with the following formulas

v0,i = (1− β)g20,i, (4)

vt,i = βvt−1,i + (1− β)g2t,i, (5)

wt+1,i = wt,i −
α

√
vt,i + ϵ

gt,i (6)

where v represents a smoothed gradient and β is the decay rate often set to 0.9.
Adam uses a combination of those methods with the following formulas for the learning rates

m0,i = (1− β1)g0,i, (7)

v0,i = (1− β2)g
2
0,i, (8)

mt,i = β1mt−1,i + (1− β1)gt,i, (9)

vt,i = β2vt−1,i + (1− β2)g
2
t,i, (10)

m̂t,i =
mt,i

1− (β1)t
, ˆvt,i =

vt,i
1− (β2)t

, (11)

wt+1,i = wt,i −
α√
ˆvt,i + ϵ

m̂t,i (12)

with parameters often initialized as α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
These learning rates are then used to weight changes during gradient descent step.
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3.2.4 Training parameters

In order to compare the model we implemented in Julia with Andrej Karparthy’s implementation in
Python, choosing different model sizes is crucial for fair and insighful evaluations. The following table
lists all the parameters the different models used for their training phase.

Small model Medium model Large model
Dataset Tiny Shakespeare

Embedding size d 16 32 64
Maximum sequence length n 64 128 256

Batch size 16 32 64
Number of Transformer Layers 1 2 4
Number of Attention Heads H 2 4 8

Dropout 0.2
Hidden Dimension in MLP Layer dh 64 128 256

Learning rate 0.01
Number of epochs 20

Let’s go through every parameters and explain what they represents and what they influence :

• Embedding Size: The dimension of the word/token embeddings, determining how each token is
represented in a dense vector space. A larger embedding size allows the model to capture more
nuanced relationships between words.

• Maximum Sequence Length: The maximum number of tokens the model can process in a single
input sequence. Longer sequences require more memory and computation but enable the model to
capture longer dependencies in text.

• Batch Size: The number of samples processed simultaneously during training. Larger batch sizes
can lead to more stable training but require more memory.

• Number of Transformer Layers: The number of stacked Transformer blocks in the model,
each containing self-attention and feed-forward layers. More layers increase the model’s capacity
to learn complex patterns.

• Number of Attention Heads: The number of self-attention heads in each Transformer layer,
allowing the model to attend to multiple parts of the sequence simultaneously.

• Dropout: A regularization technique where a fraction of the neurons are randomly ignored during
training to prevent overfitting. The given value (0.2) indicates that 20% of the neurons are dropped
out.

• Hidden Dimension in MLP Layer: The size of the hidden layer in the feed-forward network
within each Transformer block. This dimension is usually larger than the embedding size to enhance
the model’s learning capability.

• Learning Rate: The speed at which the model updates its parameters during training. A smaller
learning rate ensures gradual learning, while a larger rate speeds up training but may cause insta-
bility.

• Number of Epochs: The number of times the model processes the entire dataset during training.
More epochs allow the model to refine its learning, but too many may lead to overfitting. Here we
chose 20 epochs because it is a balance between learning efficiency and overfitting.
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4 Optimal Control

4.1 Introduction

Our project aims to train our nanoGPT model using tools. Usually, we use the stochastic gradient
conjugate to optimize the loss function. Here, we will present the steps that lead to the use of the PMP,
and then a resolution with Runge-Kutta method[8] [9]. First we tried to understand this method with a
simple example : ResNet.

4.2 Definitions

Let’s begin by the definition of the different variables

• let m ∈ N∗ the size of the dataset

• let n ∈ N∗ the size of each element of the dataset

• let L ∈ N∗ the number of layers of our network

• x ∈ Rm×n : State variable representing the concatenation of the values through the ResNet network.

• ul = (Kl, bl) ∈ Rn×n × Rn : Trainable parameters of the layer l∈ [1, L], where Kl is the weight
matrix and bl is the bias vector.

• let K = (Kl)1≤l≤L

• let b = (bl)1≤l≤L

• ∆t ∈ R : Step size of the time discretization in the differential equation.

• p ∈ Rm×n : Adjoint variable, governing the backward propagation of sensitivity information in the
optimization process.

• H : Rm×n × Rm×n × R× R(n+1)×n → R : Hamiltonian function

• J(K, b, wf , bf ) ∈ R : Cost function to be minimized, depending on the final system state x(tf ).

• tf ∈ R : Final time in the optimal control formulation.

4.3 ResNet and the Optimal Control Formulation

As the system is not depending on the beginning time, we will assume that t0 = 0. Therefore, we will
have tl = l∆t and xk

l = xk(l∆t)
Residual networks (ResNet) introduce skip connections, which lead to the formulation:

xk
l+1 = xk

l + f(xk
l , ul). (13)

which lead to the next formulation with a discretization time ∆t:

x
[k]
l+1 − x

[k]
l = ∆tf(x

[k]
l , ul). (14)

with ∆t being equal to 1.

Figure 6: Evolution of xk through a Resnet

This diagram shows the evolution of xk, for k ∈ {1, . . . ,m} through the Resnet with c(wfx
k
L + bf )

representing the passage of xk in the classifying layer.
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This equation is equivalent to the explicit Euler discretization of the continuous problem:

dx

dt
= f(x(t), u(t)), (15)

This deep learning problem can be seen as the discretization of a continuous optimal control problem.
We want to minimize the cost function J,

J(K, b, wf , bf ) :=
1

m

m∑
k=0

c(wf , bf , x
k
0, ŷ

k, u) (16)

here is the loss function depending on c, the target labels, and y[k], with respect to the weights. So
all these equations lead to the following formulation of

minu(t) J(x(tf )), t ∈ [0, tf ]
ẋk(t) = f(xk(t), u(t)), for k = 1..m
xk(0) = xk

0 for k = 1..m
u(t) = (K(t), b(t)) ∈ Rn×n × Rn

(wf , bf ) ∈ Rn+1

ẇf = 0

ḃf = 0

(̆t) = (K(t), b(t))

(17)

wf and bf are included in the state to apply Pontryagin’s Maximum Principle properly, ensuring
that all necessary conditions, including transversality, are satisfied. Treating them as states allows their
optimization alongside other variables, making the problem formulation more systematic. This approach
also aligns with the ResNet interpretation, where these parameters influence the final layer and must be
optimized coherently within the control framework.

4.4 Pontryagin Maximum Principle (PMP) in Deep Learning

4.4.1 PMP formulation

Let k ∈ {1, . . . ,m}. We apply the Pontryagin Maximum Principle to the optimal control problem
formulated, introducing the adjoint variable pk(t) related to xk. The PMP leads to the following formulas

∂xk

∂t
=

∂H

∂pk
(xk(t), pk(t), p0, u(t)), (18)

∂pk

∂t
= − ∂H

∂xk
(xk(t), pk(t), p0, u(t)), (19)

H(xk(t), pk(t), p0, u(t)) = max
w∈U

H(xk(t), pk(t), p0, w) (20)

where p0 ∈ {−1, 0} and the condition that (pk(.), p0) ̸= (0, 0)

H(xk, pk, p0, u) := pk
T

f(xk, u) + p0f0(xk, u) (21)

is the pseudo-hamiltonian related to (OCP). The bound conditions fc(t0, x
k(t0), tf , x

k(tf )) = 0 are
verified. Let

ξ(t0, x
k
0 , tf , x

k
f ) := p0g(t0, x

k
0 , tf , x

k
f ) +

∑
λifc(t0, x

k
0 , tf , x

k
f ). (22)

We have the transversality conditions :

p(t0) = −
∂ξ

∂xk
0

(t0, x
k(t0), tf , x

k(tf )) (23)

p(tf ) =
∂ξ

∂xk
f

(t0, x
k(t0), tf , x

k(tf )) (24)

H(t0) =
∂ξ

∂t0
(t0, x

k(t0), tf , x
k(tf )) (25)

H(tf ) = −
∂ξ

∂tf
(t0, x

k(t0), tf , x
k(tf )) (26)
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with [t] = (x(t), p(t), p0, u(t))
As we want to minimize J(u, we will maximize −J(K, b, wf , bf ).
The control will be u = (K, b)
We have f(xk, u) = σ(Kxk + b) as the dynamic, g(t0, x0, tf , xf ) = −J(K, b, wf , bf ) and f0 = 0

4.4.2 p0 determination

Lemma (Non-triviality Condition)

To ensure the non-triviality of the solution in an optimal control problem, it is necessary that

(p(t), p0) ̸= 0 for all t ∈ [0, tf ]. (27)

Let r ∈ Rn. Let’s assume p0 = 0. That means ξ = 0. Therefore, the transversal condition gives
p(tf ) = 0. By using 19, we have the following equation

∂H

∂x
= pTKTσ′(Kr + b), (28)

which gives:

ṗ = −pTKTσ′(Kr + b). (29)

We can then integrate

p(t) = p(tf ) exp

(
−
∫ t

tf

KTσ′(Kr(s) + b)ds

)
. (30)

which results in:

p(t) = 0 (31)

We therefore have (p, p0) = (0, 0) which is impossible
We can conclude that p0 = −1

4.4.3 Application of the PMP

Let’s now apply the PMP to our optimal problem adding bf and wf on the state :

As p0 = −1, we will remove the parameter from H as we define H̃ as
H̃(x, p, u) = H(x, p,−1, u).
We have

H̃(x(t), p(t), u(t)) =

m∑
k=1

< f(xk(t), u(t)), pk(t) > with f applied component wise (32)

The equation 18 leads to the next formula ∀k ∈ {1..m} :

dxk(t)

dt
= f(xk(t), u(t)) (33)

The equation 19 leads to the next formula ∀k ∈ {1..m} :

dpk(t)

dt
= − ∂H̃

∂xk
(xk(t), pk(t), u(t)) = −∂xkf(xk(t), u(t))pk (34)

∂pwf
(t)

∂t
= 0 (35)

∂pbf (t)

∂t
= 0 (36)

And we have finally from 20 the maximization equation :

u(t) = argmaxw∈U H̃(x(t), p(t), w(t)) (37)
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with U being the set of the controls that can be used mathematically in the problem. In this case U
is not restrained.

Finally, the transversalities conditions are :
pwf

(0) = 0
pbf (0) = 0
pk(tf ) = − 1

m
∂c
∂x (x

k(tf ), ŷ
k, wf (tf ), bf (tf )) for k =1..m

pwf
(tf ) = − 1

m

∑m
k=1

∂c
∂wf

(xk(tf ), ŷ
k, wf (tf ), bf (tf ))

pbf (tf ) = − 1
m

∑m
k=1

∂c
∂bf

(xk(tf ), ŷ
k, wf (tf ), bf (tf ))

(38)

then, the adjoint state associated to the states wf and bf are constant:

pwf
(tf ) = −

1

m

m∑
k=1

∂c

∂wf
(xk(tf ), ŷ

k, wf (tf ), bf (tf )) = 0

pbf (tf ) = −
1

m

m∑
k=1

∂c

∂bf
(xk(tf ), ŷ

k, wf (tf ), bf (tf )) = 0

By adding the condition x(0) = x0, we have the two boundary problem :

u(t) = argmaxw∈U H̃(x(t), p(t), w(t))
dxk(t)

dt = f(xk(t), u(t)),∀k ∈ {1..m}
dpk(t)

dt = −pk∂xkf(xk(t), u(t)),∀k ∈ {1..m}
p(tf ) = ∇yJ(x(tf ))
x(0) = x0

(HBVP)

4.5 Discretization

Using implicit euler discretization of the equation 35, we have :

pkl+1 − pkl = −(∂xf(xk
l , ul))

T∆tp
k
l+1 (39)

The adjoint equation propagates backward from:

p(tf ) = ∇xJ(K, b, wf , bf ). (40)

On the other hand, the equation Using explicit euler discretization on the equation 33, we have :

xk
l+1 = xk

l ∆tf(x
k
l , ul). (41)

We can resolve this equation with the condition x(0) = x0

4.6 Backpropagation

Backpropagation is about understanding how changing the weights and biases in a network changes the
cost function.

In our case (ResNet), f(xk, u) = σ(Kxk + b) where σ is the activation function of the network
(R → R), applied component by component, and K is the weight vector of the network. K is the same
for every input as would the weights be for a neural network.

To perform the gradient descent algorithm, we first must compute the gradient of the cost function
J with respect to Kl and bl

∇Kl
J(K, b, wf , bf ) =

(
1

m

∑
k

∂c

∂xk
L

(xk
L, ŷ

k, wf , bf ) ·
∂xk

n

∂xk
n−1

· · ·
∂xk

l+1

∂Kl

)T

and

∇blJ(K, b, wf , bf ) =

(
1

m

∑
k

∂C

∂xk
L

(xk
L, ŷ

k, wf , bf ) ·
∂xk

n

∂xk
n−1

· · ·
∂xk

l+1

∂bl

)T
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∇Kl
J(K, b, wf , bf ) =

1

m

∑
k

(
∂xk

l+1

∂Kl

)T (
∂xk

l+2

∂xk
l+1

)T

· · ·

(
∂xk

L

∂xk
L−1

)T
∂c

∂xL
(xk

L, ŷ
k, wf , bf )

T

=
1

m

∑
k

(
∂f

∂Kl
(xk

l , wf , bf )

)T (
I +

∂f

∂x
(xk

l+1,Kl+1, bl+1)

)T

· · ·
(
I +

∂f

∂x
(xk

L−1,KL−1, bL−1)

)T
∂c

∂xL
(xk

L, ŷ
k, wf , bf )

T

With pkL = ∇xL
c(xk

L, ŷ
k, wf , bf ) (42)

and pkl−1 = pkl +
∂f

∂x
(xk

l−1,Kl−1, bl−1)p
k
l , l = N, . . . , 1

pkl−1 =

(
I +

∂f

∂x
(xk

l−1,Kl−1, bl−1)

)
pkl (43)

Therefore

∇Kl
J(K, b, wf , bf ) =

1

m

∑
k

(
∂f

∂Kl
(xl,Kl, bl)

)T

pkl+1 (44)

By the same reasoning

∇blJ(K, b, wf , bf ) =
1

m

∑
k

(
∂f

∂bl
(xl,Kl, bl)

)T

pkl+1 (45)

4.7 The algorithm

The last section summarizes in the following algorithm which explains how to train a resnet network
with control optimal tools.

Algorithm 2 Training a neural network with ODE

1: ”input: an initial guess of u and a step size τ”
2: for i = 1...niter do
3: //compute the forward pass with equation (14) :
4: for k = 1...m do
5: Initialisation of xk

0

6: for l = 1...L do
7: xk

l+1 − xk
l = ∆tf(x

k
l , ul)

8: end for
9: end for

10: //compute the backpropagataion with equations (39) and (40):
11: for k = 1...m do
12: pkL = ∇xJ(K, b, wf , bf )
13: for l = L...1 do
14: pkl = −pkl+1 + (∂xf(x

k
l , ul))

T∆tp
k
l+1

15: end for
16: end for
17: compute the gradient of the cost function with equations (44) and (45)
18: //gradient descent :
19: for l = 1...L do
20: Kl = Kl − τ ×∇Kl

J(K, b, wf , bf )
21: bl = bl − τ ×∇blJ(K, b, wf , bf )
22: end for
23: end for

where τ is the learning rate.
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5 Results

5.1 NanoGPT results

Figure 7: Loss curves of NanoGPT trained on Python and Julia

The comparison between the Julia and Python implementations reveals a similar overall loss reduction
trend during training. However, the Python implementation demonstrates a faster initial convergence,
with a steeper decline in both training and validation loss within the first 500 iterations. The Julia
implementation, while stable, exhibits a slower convergence rate, particularly in the early stages. This
difference may be attributed to slight variations in numerical precision, library-specific optimizations, or
differences in random initialization. Despite these differences, both implementations ultimately stabilize
at comparable loss values, highlighting the consistency of the underlying algorithm across programming
environments.

Additionally, below is a real text sample generated by both versions, providing a qualitative compar-
ison alongside the quantitative performance metrics.

Python
IUS:
And let you think it’s sleep out of pity to give him
Than you,
Richard,
When they can not be the office
And thy daughter to wilt the earth, which will had
it, this
Her face.
O, give him come,
Had not the lady, ’twas but,
The devil,
That he, we have no?

Julia
mistress menenius marcius : : : ’ ? . elbow the ap-
plause of : ? : menenius : hath minola upon river :
work ’ is ; : . pence folks gear do and , her work : :
mongers ’ : , first is honour ? of man pence return
fellow ; indeed

To evaluate the performance of text generation between Python and Julia implementations, we com-
pared both the BLEU score and execution time. The BLEU score reflects the quality of the generated
text, while the execution time provides insight into computational efficiency. The results are summarized
in

Metric Python Julia

BLEU Score 12% 2.9%
Execution Time (s) 116.2 542.5

Table 1: Comparison of BLEU Score and Execution Time
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Python achieves a higher BLEU score, indicating better text generation quality. In contrast, Ju-
lia tends to produce results with excessive punctuation. Additionally, the execution time in Julia is
approximately five times longer than in Python.

5.2 Optimal Control results

To test the efficiency of our residual neural network (with optimal control), we created different datasets
to evaluate its performance and comparate it with a classic resnet. The first dataset is linearly separable.
It is a simple problem where a single line is enough to perform the classification. The second dataset has
the shape of a donut: red points are generated between two circles, while blue points are placed in the
remaining space. Finally, the last dataset is shaped like a cross.

These two datasets are interesting because they are not linearly separable. The cross can be separated
with several lines, which increases the complexity of the decision boundary, while the donut is simply
non-linear.

Figure 8: Examples of datasets (linear problem / donut / cross)

Figure 9: Evolution of the loss

As we can see on this 3 different examples, the behaviour of the classic Resnet and the Resnet with
optimal control are pretty similar. The similarity of the behaviours was predictable. Indeed in the Resnet
with optimal control we used the Euler method. We expect to have better results by using more complex
methods such as Runge Kutta methods.
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6 Conclusion

Through this initial approach, we have gained a comprehensive mathematical understanding of trans-
formers, as well as insight into the inner workings of a simplified transformer model such as nanoGPT.
This exploration has not only deepened our theoretical grasp of transformer architectures but also pro-
vided a practical foundation for analyzing their behavior. Moreover, our exploration has allowed us to
understand how optimal control techniques can be effectively applied in the field of neural networks,
offering a new perspective on model optimization. By leveraging these tools, we have exploited their
potential to optimize the trainable parameters of a simple neural network such as ResNet. Further
improvements are possible by using more complex numerical integration schemes, such as Runge-Kutta
methods, which could enhance the stability of gradient computations. This initial exploration suggests
that this technique could be applied to more complex models like nanoGPT, potentially improving the
efficiency and performance of transformer-based models.
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